
A Pragmati
 Implementation ofNon-Blo
king Linked-ListsTimothy L. HarrisUniversity of Cambridge Computer Laboratory,Cambridge, UK, tim.harris�
l.
am.a
.ukAbstra
t. We present a new non-blo
king implementation of 
on
ur-rent linked-lists supporting linearizable insertion and deletion operations.The new algorithm provides substantial bene�ts over previous s
hemes:it is 
on
eptually simpler and our prototype operates substantially faster.1 Introdu
tionIt is be
oming evident that non-blo
king algorithms 
an deliver signi�
ant bene-�ts to parallel systems [MP91,LaM94,GC96,ABP98,Gre99℄. Su
h algorithms uselow-level atomi
 primitives su
h as 
ompare-and-swap { through 
areful designand by es
hewing the use of lo
ks it is possible to build systems whi
h s
ale tohighly-parallel environments and whi
h are resilient to s
heduling de
isions.Linked-lists are one of the most basi
 data stru
tures used in program design,and so a simple and e�e
tive non-blo
king linked-list implementation 
ould serveas the basis for many data stru
tures. This paper presents a novel implementa-tion of linked-lists whi
h is non-blo
king, linearizable and whi
h is based on thethe 
ompare-and-swap (CAS) operation found on 
ontemporary pro
essors.Se
tion 5 sket
hes a proof of 
orre
tness, des
ribes the use of model-
he
kingto perform exhaustive veri�
ation within a limited appli
ation domain and alsodes
ribes empiri
al tests performed on exe
ution tra
es from an a
tual imple-mentation.In Se
t. 6 we 
ompare the performan
e of the new algorithm against thatof a lo
k-based implementation and against an existing non-blo
king algorithm.Compared with these other thread-safe algorithms, ours provides the best perfor-man
e on ea
h of three simulated workloads and for every level of 
on
urren
y.2 OverviewIn this se
tion we present an overview of our algorithm and the diÆ
ulty in im-plementing non-blo
king linked-lists. As a running example 
onsider an orderedlist 
ontaining the integers 10 and 30 along with sentinel head and tail nodes:
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Su
h a data stru
ture may 
omprise 
ells 
ontaining two �elds: a key �eldused to store the element and a next �eld to 
ontain a referen
e to the next 
ellin the list.Insertion is straightforward: a new list 
ell is 
reated (below, left) and thenintrodu
ed using single CAS operation on the next �eld of the proposed prede-
essor (below, right).
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20In this 
ase the atomi
ity of the CAS ensures the the nodes either side ofthe insertion have remained adja
ent. This simple guarantee is insuÆ
ient fordeletions within the list. Suppose that we wish to remove the value 10. Anobvious way of ex
ising this node would be to perform a CAS that swings thereferen
e from the head so that the node 
ontaining 30 be
omes the �rst in thelist:
10H T30Although this CAS ensures that the node 10 was still at the start of thelist it 
annot ensure that no additional nodes were introdu
ed between the 10node and the 30 node. If this deletion took pla
e 
on
urrently with the previousinsertion then that new node would be lost:
10
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H T30The single CAS 
ould neither dete
t nor prevent 
hanges between 10 and30 on
e the deletion pro
edure had sele
ted 30. Our proposed solution { andindeed the 
rux of the algorithms presented here { is to use two separate CASoperations in pla
e of that single one. The �rst of these is used to mark the next�eld of the deleted node in some way (below, left), whereas the se
ond is used toex
ise the node (below, right):
H T3010 H T3010We say that a node is logi
ally deleted after the �rst stage and that it isphysi
ally deleted after the se
ond. A marked �eld may still be traversed buttakes a numeri
ally distin
t value from its previous unmarked state; the stru
tureof the list is retained while signalling 
on
urrent insertions to avoid introdu
ingnew nodes immediately after those that are logi
ally deleted. In our example the
on
urrent insertion of 20 would observe 10 to be logi
ally deleted and wouldattempt to physi
ally delete it before re-trying the insertion.



3 Related WorkGeneralized non-blo
king implementations based on CAS were presented by Her-lihy [Her91,Her93℄. However, linked-lists based on this general s
heme are highly
entralized and su�er poor performan
e be
ause they essentially use CAS to
hange a shared global pointer from one version of the stru
ture to the next.Valois was the �rst to present an e�e
tive CAS-based non-blo
king implemen-tation of linked-lists [Val95℄. Although highly distributed, his implementation isvery involved. The list is held with auxilliary 
ells between adja
ent pairs of or-dinary 
ells. Auxilliary exist to provide an extra level of indire
tion so that a 
ellmay be removed by joining together the auxilliary 
ells adja
ent to it. Valois'algorithm exposes a more general and lower level interfa
e than we do here; heprovides expli
it 
ursors to identify 
ells in the list and operations to insert ordelete nodes at those points.The originally-published algorithm 
ontained a number of errors relating tohow referen
e-
ounted storage was managed. One has been reported previouslyand others were identi�ed when implementing Valois' algorithm for 
omparisonin this paper [MS95,Val01℄.To over
ome the 
omplexity of building linearizable lo
k-free linked-lists us-ing CAS, Greenwald suggested a stronger double-
ompare-and-swap (DCAS)primitive that atomi
ally updates two storage lo
ations after 
on�rming thatthey both 
ontain required values [Gre99℄. DCAS is not available on today'smulti-pro
essor ar
hite
tures. However, it does admit a simple linearizable linked-list algorithm: insertions pro
eed as des
ribed in Se
t. 2 and deletions by atomi
updates to the next �eld of the 
ell being removed as well as that of its prede
es-sor. Greenwald's work was an extension of earlier non-linearizable DCAS-basedlinked-list algorithms due to Massalin and Pu [MP91℄.4 AlgorithmsIn this se
tion we present our new algorithm in pseudo-
ode modeled on C++and designed for exe
ution on a 
onventional shared-memory multi-pro
essorsystem supporting read, write and atomi
 
ompare-and-swap operations. We as-sume that the operations de�ned here are the only means of a

essing linkedlist obje
ts. Ea
h pro
essor exe
utes a sequen
e of these operations, de�ning ahistory of invo
ations/responses and indu
ing a real-time order between them.We say that an operation A pre
edes B if the response to A o

urs before theinvo
ation of B and that operations are 
on
urrent if they have no real-timeordering.A sequential history is one in whi
h ea
h invo
ation is followed immediatelyby its 
orresponding response. Our basi
 
orre
tness requirement is linearizabil-ity whi
h requires that (a) the responses re
eived in every 
on
urrent historyare equivalent to those of some legal sequential history of the same requestsand (b) the ordering of operations within the sequential history is 
onsistentwith the real-time order [HW90℄. Linearizability means that operations appear



class List<KeyType> {

Node<KeyType> *head;

Node<KeyType> *tail;

List() {

head = new Node<KeyType> ();

tail = new Node<KeyType> ();

head.next = tail;

}

}

class Node<KeyType> {

KeyType key;

Node *next;

Node (KeyType key) {

this.key = key;

}

}Fig. 1. An instan
e of the List 
lass 
ontains two �elds whi
h identify the head andthe tail. Instan
es of Node 
ontain two �elds identifying the key and su

essor of thenode.
public boolean List::insert (KeyType key) {

Node *new_node = new Node(key);
Node *right_node, *left_node;

do {
right_node = search (key, &left_node);
if ((right_node != tail) && (right_node.key == key)) /*T1*/

return false;
new_node.next = right_node;
if (CAS (&(left_node.next), right_node, new_node)) /*C2*/

return true;
} while (true); /*B3*/

}Fig. 2. The List::insert method attempts to insert a new node with the suppliedkey.to take e�e
t atomi
ally at some point between their invo
ation and response.Our implementation is additionally non-blo
king, meaning that some operationwill 
omplete in a �nite number of steps, even if other operations halt.We write CAS(addr,o,n) for a CAS operation that atomi
ally 
ompares the
ontents of addr against the old value o and { if they mat
h { writes n to thatlo
ation. CAS returns a boolean indi
ating whether this update took pla
e. Ourdesign was guided by the assumption that a CAS operation is slower to exe
utethan a write whi
h in turn is slower than a read.4.1 Implementing SetsInitially we will 
onsider a set obje
t supporting three operations: Insert(k),Delete(k), Find(k). Ea
h parameter k is drawn from a set of totally-orderedkeys. The result of an Insert, a Delete or a Find is a boolean indi
ating su

essor failure. The set is represented by an instan
e of List whi
h 
ontains a singly-linked list of instan
es of Node. As sket
hed in Se
t. 2 these are held in as
endingorder with sentinel head and tail nodes.



public boolean List::delete (KeyType search_key) {
Node *right_node, *right_node_next, *left_node;

do {
right_node = search (search_key, &left_node);
if ((right_node == tail) || (right_node.key != search_key)) /*T1*/

return false;
right_node_next = right_node.next;
if (!is_marked_reference(right_node_next))

if (CAS (&(right_node.next), /*C3*/
right_node_next, get_marked_reference (right_node_next)))

break;
} while (true); /*B4*/
if (!CAS (&(left_node.next), right_node, right_node_next)) /*C4*/
right_node = search (right_node.key, &left_node);

return true;
}Fig. 3. The List::delete method attempts to remove a node 
ontaining the suppliedkey.
public boolean List::find (KeyType search_key) {

Node *right_node, *left_node;

right_node = search (search_key, &left_node);
if ((right_node == tail) ||

(right_node.key != search_key))
return false;

else
return true;

}Fig. 4. The List::find method tests whether the list 
ontains a node withthe supplied key.The referen
e 
ontained in the next �eld of a node may be in one of twostates: marked or unmarked. A node is marked if and only if its next �eld ismarked. Marked referen
es are distin
t from normal referen
es but still allowthe referred-to node to be determined { for example they may be indi
ated byan otherwise-unused low-order bit in ea
h referen
e. Intuitively a marked nodeis one whi
h should be ignored be
ause some pro
ess is deleting it. The fun
tionis marked referen
e(r) returns true if and only if r is a marked referen
e.Similarly get marked referen
e(r) and get unmarked referen
e(r) 
onvertbetween marked and unmarked referen
es.The 
on
urrent implementation 
omprises four methods (Fig. 2-5). The �rstthree, List::insert, List::delete and List::find implement the Insert,Delete and Find operations respe
tively. The fourth, List::sear
h, is used dur-ing ea
h of these operations. It takes a sear
h key and returns referen
es to twonodes 
alled the left node and right node for that key. The method ensures thatthese nodes satisfy a number of 
onditions. Firstly, the key of the left node mustbe less than the sear
h key and the key of the right node must be greater than



private Node *List::search (KeyType search_key, Node **left_node) {
Node *left_node_next, *right_node;

search_again:
do {
Node *t = head;
Node *t_next = head.next;

/* 1: Find left_node and right_node */
do {

if (!is_marked_reference(t_next)) {
(*left_node) = t;
left_node_next = t_next;

}
t = get_unmarked_reference(t_next);
if (t == tail) break;
t_next = t.next;

} while (is_marked_reference(t_next) || (t.key<search_key)); /*B1*/
right_node = t;

/* 2: Check nodes are adjacent */
if (left_node_next == right_node)

if ((right_node != tail) && is_marked_reference(right_node.next))
goto search_again; /*G1*/

else
return right_node; /*R1*/

/* 3: Remove one or more marked nodes */
if (CAS (&(left_node.next), left_node_next, right_node)) /*C1*/

if ((right_node != tail) && is_marked_reference(right_node.next))
goto search_again; /*G2*/

else
return right_node; /*R2*/

} while (true); /*B2*/
}Fig. 5. The List::sear
h operation �nds the left and right nodes for a parti
ularsear
h key.or equal to the sear
h key. Se
ondly, both nodes must be unmarked. Finally, theright node must be the immediate su

essor of the left node. This last 
onditionrequires the sear
h operation to remove marked nodes from the list so that theleft and right nodes are adja
ent. As we will show the List::sear
h methodis implemented so that these 
onditions are satis�ed 
on
urrently at some pointbetween the method's invo
ation and its 
ompletion.List::sear
h is divided into three se
tions. The �rst se
tion iterates alongthe list to �nd the �rst unmarked node with a key greater than or equal tothe sear
h key. This is the right node. The left node preliminarily refers to theprevious unmarked node that was found. The se
ond stage examines these nodes.If left node is the immediate prede
essor of right node then List::sear
hreturns. Otherwise, the third stage uses a CAS operation to remove markednodes between left node and right node.



List::insert uses List::sear
h to lo
ate the pair of nodes between whi
hthe new node is to be inserted. The update itself takes pla
e with a single CASoperation (C2) whi
h swings the referen
e in left node.next from right nodeto the new node.List:delete uses List::sear
h to lo
ate the node to delete and then usesa two-stage pro
ess to perform the deletion. Firstly, the node is logi
ally deletedby marking the referen
e 
ontained in right node.next (C3). Se
ondly, the nodeis physi
ally deleted. This may be performed dire
tly (C4) or within a separateinvo
ation of sear
h.The List::find method is shown in Fig. 4. It invokes List::sear
h andexamines the resulting right node.5 Corre
tnessIn this se
tion we des
ribe three approa
hes taken to 
he
king the 
orre
tnessof the algorithms presented here. Se
tion 5.1 outlines a proof of linearizabilityand progress, Se
t. 5.2 des
ribes the exhaustive testing of some 
ases throughmodel 
he
king and Se
t. 5.3 des
ribes a method we used for examining tra
esfrom parti
ular program runs.5.1 Proof Sket
hWe will take a fairly dire
t approa
h to outlining the linearizability of the op-erations by identifying parti
ular instants during their exe
ution at whi
h the
omplete operation appears to o

ur atomi
ally.Conditions Maintained by Sear
h. Our argument relies on the 
onditionsidenti�ed in Se
t. 4.1 whi
h the implementation of List::sear
h guaranteeshold at some point during its invo
ation. For the ordering 
onstraints, notethat when right node is initialized the pre
eding loop ensured that sear
h key� right node.key. Similarly left node.key < sear
h key be
ause otherwisethe loop would have terminated earlier.For the adja
en
y 
ondition and the mark state of the left node we mustseparately 
onsider ea
h return path. If List::sear
h returns at R1 then thetest guarding the return statement ensures that right node was the immediatesu

essor of the left node when the next �eld of that node was read into thelo
al variable t next. The same value of t next is found to be unmarked beforeinitializing left node. If List::sear
h returns at R2 then C1 establishes therequired 
onditions.For the mark state of the right node, observe that both return paths 
on�rmthat the right node is unmarked after the point at whi
h the �rst three 
onditionsmust be true. Nodes never be
ome unmarked and so we may dedu
e that theright node was unmarked at that earlier point.



Linearization points. Let opi;m be the mth operation performed by pro
essori and let di;m be the �nal real-time at whi
h the List::sear
h post-
onditionsare satis�ed during its exe
ution. These di;m identify the times at whi
h theout
ome of the operations be
ome inevitable and we shall take the orderingbetween them to de�ne the linearized order of Find(k) operations or unsu

essfulupdates. For a su

essful �nd at di;m the right node was unmarked and 
ontainedthe sear
h key. For an unsu

essful insertion it exhibits a node with a mat
hingkey. For an unsu

essful deletion or �nd it exhibits the left and right nodes whi
h,respe
tively, have keys stri
tly less-than and stri
tly greater-than the sear
h key.Furthermore let ui;m be the real-time at whi
h the update C2 inserts a node orC3 logi
ally deletes a node. We shall take ui;m as the linearization points for su
hsu

essful updates. In the 
ase of a su

essful insertion the CAS at ui;m ensuresthat the left node is still unmarked and that the right node is still its su

essor.For a su

essful deletion the CAS at ui;m serves two purposes. Firstly, it ensuresthat the right node is still unmarked immediately before the update (that is, ithas not been logi
ally deleted by a pre
eding su

essful deletion). Se
ondly, theupdate itself marks the right node and therefore makes the deletion visible toother pro
essors.Progress. We will show that the 
on
urrent implementation is non-blo
king.We will show that ea
h su

essful insertion 
auses exa
tly one update, that ea
hsu

essful deletion 
auses at most two updates and that unsu

essful operationsdo not 
ause any updates.The CAS instru
tions C1 and C4 ea
h su

eed only by unlinking marked nodesfrom the list. Therefore the number of times that these CAS instru
tions su

eedis bounded above by the number of nodes that have been marked. Exa
tly onenode is marked during ea
h su

essful deletion (C3) and therefore at most oneupdate may be performed by C1 or C4 for ea
h su

essful deletion. The remainingCAS instru
tions (C2 and C3) o

ur respe
tively exa
tly on
e on the return pathsfrom su

essful insertions and deletions.Sin
e there are no re
ursive or mutually-re
ursive method de�nitions 
onsiderea
h ba
kward bran
h in turn:{ Ea
h time B1 is taken the lo
al variable t is advan
ed on
e node down thelist. The list is always 
ontains the unmarked tail node and the nodes visitedhave su

essively stri
tly larger keys.{ Ea
h time B2 is taken the CAS at C1 has failed and therefore the value ofleft node.next 6= left node next. The value of the �eld must have beenmodi�ed sin
e it was read during the loop ending at B1. Modi�
ations areonly made by su

essful CAS instru
tions and ea
h operation 
auses at mosttwo su

essful CAS instru
tions.{ Ea
h time B3 or B4 is taken the CAS at C2 or C4 has failed. As before, thevalue held in that lo
ation must have been modi�ed sin
e it was read inList::sear
h and at most two su
h updates may o

ur for ea
h operation.



{ Ea
h time G1 or G2 is taken then a node whi
h was previously unmarkedhas been marked by another pro
essor. As before, at most two updates mayo

ur for ea
h operation.5.2 Model Che
kingThe dSPIN model 
he
ker was used to exhaustively verify the operations for
ertain problem domains. dSPIN is an extension of the SPIN model 
he
kerwith adds support for pointers, storage management, fun
tion 
alls and lo
als
opes [Hol97,IS99℄. This made it more suitable than SPIN for a natural repre-sentation of these algorithms.The modeled state 
ontains two representations of the set: one 
omprises alinked list of 
ells whereas the other is summarized as a bit ve
tor. The linkedlist is updated as proposed here using atomi
 d step instru
tions to implementCAS. The bit ve
tor is 
he
ked or updated using further d steps at the proposedlinearization points.The model was parameterized a

ording to the number of 
on
urrent threads,the number of operations that ea
h would attempt and the range of key valuesthat 
ould be used. The two largest 
on�gurations we 
ould pra
ti
ably test werewith four threads, ea
h performing one operation with three potential keys andwith two threads ea
h performing two operations with four potential keys.5.3 Pra
ti
al TestingThe linearizability of the operations has also been tested pragmati
ally. Althoughsu
h tests 
annot provide the assuran
es of formal methods they are nonethe-less important be
ause they avoid the need to make simplifying assumptionsfor tra
tability. In parti
ular, the use of relaxed memory models means thatthe operations supported by a 
onventional shared memory ma
hine are notlinearizable; a dire
t implementation is likely to fail without further memorybarrier instru
tions.It is not generally possible to re
ord a
tual timestamp values for arbitraryoperations within an running pro
ess. Instead, we surrounded the 
ode exe-
uted at ea
h linearization point with further instru
tions to re
ord 
oherentper-pro
essor 
y
le 
ounts.The resulting intervals were re
orded to an in-memory log whi
h was thenreplayed sequentially in timestamp order. The results thus obtained were 
om-pared with those from the 
on
urrent exe
ution. The replay program 
ontainssimple heuristi
s to deal with overlapping intervals. If these 
annot determine a
onsistent linearized order then the replay program reports unresolved in
onsis-ten
ies for manual inspe
tion and re-ordering.6 ResultsThe algorithm des
ribed in Se
t. 4 has been implemented in a 
ombination of Cand SPARC V9 assembly language. We evaluated its performan
e on an E450
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New(
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e-
ounted algorithmsall operating on key 0. (d) Non-referen
e-
ounted algorithmson keys 0 : : : 8191.Fig. 6. CPU time (user+system) a

ounted to the ben
hmark appli
tion for ea
h algo-rithm on a variety of workloads. In ea
h 
ase the x-axis shows the number of 
on
urrentthreads.server running Solaris 8 and �tted with four 400MHz SPARC V9 pro
essorsand 4GB physi
al memory. It is worth emphasising that the 
ode in Fig. 1-4is intended merely as pseudo-
ode and does not re
e
t an optimised (or evenne
essarily 
orre
t) implementation. Pro
essors may require additional memorybarriers { for example between initializing the �elds of a new node and intro-du
ing it into the list, or between the CAS that logi
ally deletes a node and theCAS that physi
ally deletes it.The test appli
ation 
ompared our implementation against Valois' lo
k-freealgorithm and against a straightforward one in whi
h the list is prote
ted bya mutual ex
lusion lo
k1. Both lo
k-free algorithms were evaluated with andwithout referen
e-
ounting. All list 
ells were allo
ated ahead of time so that theperforman
e of parti
ular memory allo
ation fun
tions was not in
luded in the1 This 
omparison against a lo
k-based algorithm is somewhat unfair: the simpli�edprogramming model there makes it straightforward to implement a more eÆ
ientdata stru
ture su
h as a tree or skiplist.



results. The 
ode to manipulate referen
e-
ounts is based on Valois' as modi�edby Mi
hael and S
ott with the ex
eption that referen
e 
ounts are re
ursivelyde
remented when a 
ell is freed.We generated a workload of insertion and deletion operations by randomly
hoosing keys uniformly distributed within a parti
ular range, sele
ting equiprob-ably between insertions and deletions. We used per-thread linear 
ongruentialrandom number generators with the same parameters as the lrand48 fun
tionfrom the Solaris 8 lib
 library. Seeds were 
hosen to give non-overlapping series.The test harness was parameterized on the algorithm to use, the numberof 
on
urrent threads to operate and the range of keys that might be insertedor deleted. In ea
h 
ase every thread performed 1 000 000 operations. Figure 6shows the CPU a

ounted to the pro
ess as a whole for ea
h of the algorithmstested on a variety of workloads.It is immediately apparent that our algorithm performs notably better forevery experiment using more than one thread. In the 
ase of single-threadedexe
ution it outperforms Valois' algorithm in these tests and its performan
eequals that the lo
k-based implementation. The relative performan
e 
omparedwith Valois' algorithm is not surprising: we avoid the need to 
reate, traverseand ex
ise auxilliary nodes.In addition to the workloads presented in those graphs we also tested 
on-�gurations with larger ranges of keys, or where the list was initially `primed'with a long sequen
e of nodes that would never be deleted. In ea
h 
ase thisin
reased the total number of nodes in the list and thereby added to the 
ost ofretrying operations when CAS instru
tions fail. One fear was that the lo
k-freealgorithms would start to perform poorly be
ause of the potential for multipleretries. We studied workloads up to lists of 65536 elements and were unable to�nd any 
on�guration for whi
h the algorithms based on mutual-ex
lusion givethe best performan
e. We suspe
t that although ea
h retry be
omes more 
ostly,the likelihood of retries de
reases as the rate of 
on
i
ting updates falls.Figure 6a shows the performan
e of referen
e-
ounted implementations. TheCPU requirements of Valois' algorithm are degraded by a fa
tor of 5 in thesingle-threaded 
ase, rising to over 11 for sixteen threads. Similarly, the CPUtime required by our algorithms is degraded by a fa
tor of 10 rising to over 15.In ea
h 
ase this is a 
onsequen
e of need to manipulate referen
e-
ounts (usingCAS operations) at ea
h stage during a list's traversal. Valois reports that hehad originally intended to assume the use of a tra
ing garbage 
olle
tor [Val01℄.The performan
e of referen
e-
ount manipulation is hampered be
ause theSPARC pro
essor does not provide atomi
 fet
h-and-add. However, measure-ments taken on a dual-pro
essor Intel x86 ma
hine (with that fa
ility [PPr96℄)suggest that the degradation is low when 
ompared with the overall 
osts seenhere. When the referen
e 
ounts lie on separate lines in the L1 data 
a
he thenupdates implemented through CAS are 10% slower than those using fet
h-and-add. This rises to a fa
tor of 2 degredation when the two pro
essors attempt toupdate the same address.



Of 
ourse, our results are optimisti
 in that they do not 
onsider the 
ost ofperforming GC. However, as Jones and Lins write, if the size of the a
tive datastru
ture is �xed then the 
ost of 
opying 
olle
tors may be redu
ed arbitrarilyat the expense of the total heap size [JL96℄. More pra
ti
ally, they report thatoverall 
osts of around 10-20% are typi
al in modern well-implemented systems.We examined a further approa
h to storage re
lamation based on the deferredfreeing of nodes. In this s
heme ea
h node 
ontains an additional �eld throughwhi
h it 
an be linked onto a to-be-freed list when it is ex
ised from the mainlist. Ea
h thread takes a snapshot of a global timer as its 
urrent time beforestarting ea
h operation. Entries are removed from a to-be-freed list when thetime of their ex
ision pre
edes the minimum 
urrent time of any thread: at thatpoint no thread 
an still have a referen
e to the node held in any of its lo
alvariables.Our implementation allo
ates a pair of to-be-freed lists for ea
h thread. Theseare termed the old list and the new list and are held along with a separate per-thread timer snapshot that is more re
ent than the ex
ision time of any elementof the old list. When the minimum 
urrent time ex
eeds the snapshot then theentire 
ontents of the old list are freed and the elements of the new list are movedto the old list.This deferred freeing s
heme introdu
es two prin
ipal overheads when 
om-pared with the used of garbage 
olle
tion. Firstly, a CAS operation is neededto pla
e nodes on a to-be-freed list { in our implementation this in
reased theCPU requirements by 15% 
ompared with the results from Fig. 6a operatingwith 16 threads. The se
ond overhead is the 
ost of removing elements from theto-be-freed lists and establishing when it is safe to do so. This was a further1% when performed every 1000 operations and 5% every 100, rising to 52% ifperformed after every operation.Figure 7 presents a further analysis of the run-time performan
e of the threenon-referen
e-
ounted algorithms, showing the distribution of exe
ution-timesfor four di�erent kinds of operation. These results were gathered when 8 
on
ur-rent threads performing insertions and deletions of keys in the range 0 : : : 255.In the 
ase of su

essful operations the lo
k-based implementation is able toa
hieve lower exe
ution times than either lo
k-free s
heme. However, it is alsoo

asionally prone to mu
h longer exe
ution times whi
h explain the higher meanexe
ution time suggested by Fig. 6.The situation is somewhat di�erent for unsu

essful operations in that bothlo
k-free algorithms obtain some exe
ution times whi
h are lower than those ofthe lo
k-based implementation { re
all that unsu

essful operations may o

urwithout requiring any CAS operations or other updates to the data stru
ture.7 Delete Greater-than-or-equalNow 
onsider the problem of implementing a further operation of the formDeleteGE(k) whi
h returns and removes the smallest item that is greater thanor equal to k. It is tempting to implement this by modifying List::delete so
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essful deletionsFig. 7. Operation-time distributions. Ea
h graph shows exe
ution times (in pro
essor
y
les) on the x-axis and numbers of o

uran
es on the y-axis.that the test T1 does not fail if the key of the right node is greater than thesear
h key.Unfortunately this implementation is not linearizable. Suppose that threeinsertion operations are exe
uted in sequen
e: Insert(20), Insert(15), Insert(20).The �rst two su

eed and the third must fail be
ause 20 is already in the set.However, 
onsider a 
on
urrent DeleteGE(10) operation, attempting to deleteany node with a key greater than or equal to 10. Con
urrent exe
ution maypro
eed as follows:{ List::deleteGE invokes List::sear
h immediately after the �rst insertionof 20. It takes the head of the list as the left node and the node 
ontaining20 as the right.{ The su

essful insertion of 15 o

urs.{ The unsu

essful insertion of 20 o

urs, observing 15 as the key of its leftnode and 20 as the key of its right node.{ List::deleteGE(10) 
ompletes after logi
ally deleting the node 
ontaining20.



We must order this DeleteGE(10) operation su
h that its result of 20 wouldbe obtained by a sequential exe
ution. This requires it to be pla
ed before theinsertion of 15 be
ause otherwise the key 15 should have been returned in prefer-en
e to 20. However, we must also linearize the deletion after the failed insertionof 20 be
ause otherwise that insertion would have su

eeded. These 
onstraintsare irre
on
ilable.Intuitively the problem is that at the exe
ution of C3 the right node neednot be the immediate su

essor of the left node. This was a

eptable when
onsidering the basi
 Delete(k) operation be
ause we were only 
on
erned with
on
urrent updates a�e
ting nodes with the same key. Su
h an update musthave marked the right node and so C3 would have failed. In 
ontrast, during theexe
ution of List::deleteGE, we must be 
on
erned with updates to any nodeswhose keys are greater than or equal to the sear
h key.We 
an address this by retaining the implementation of List::deleteGE but
hanging List::insert in su
h a way that C3 must fail whenever a new nodemay have been inserted between the left and right nodes. This would mean that,whenever C3 su

eeds, the key of the right node must still be the smallest keythat is greater than or equal to the sear
h key.This is a
hieved by using a single CAS operation to (a) introdu
e a pair of newnodes, one that 
ontains the value being inserted and another that dupli
atesthe right node and (b) mark the original right node:
30

20 30

10H TSu
h a CAS 
on
eptually has two e�e
ts. Firstly, it introdu
es the new nodeinto the list: beforehand the next �eld of the su

essor is unmarked and there-fore the right node must still be the su

essor of the left node. Se
ondly, bymarking the 
ontents of that next �eld, the CAS will 
ause any 
on
urrentList::deleteGE with the same right node to fail. Note that the key of thenow-marked right node is not in the 
orre
t order. However, the existing imple-mentations of List::sear
h, List::delete, List::find and List::deleteGEare written so that they do not rely on the 
orre
t ordering of marked nodes.8 Con
lusionThis paper has presented a new non-blo
king implementation of linked lists. Webelieve that the algorithms presented here are linearizable. They have also beenimplemented and we have shown that their measured performan
e improves bothon previously published non-blo
king data stru
tures and also on a lo
k-basedimplementation.8.1 A
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