
A Pragmati Implementation ofNon-Bloking Linked-ListsTimothy L. HarrisUniversity of Cambridge Computer Laboratory,Cambridge, UK, tim.harris�l.am.a.ukAbstrat. We present a new non-bloking implementation of onur-rent linked-lists supporting linearizable insertion and deletion operations.The new algorithm provides substantial bene�ts over previous shemes:it is oneptually simpler and our prototype operates substantially faster.1 IntrodutionIt is beoming evident that non-bloking algorithms an deliver signi�ant bene-�ts to parallel systems [MP91,LaM94,GC96,ABP98,Gre99℄. Suh algorithms uselow-level atomi primitives suh as ompare-and-swap { through areful designand by eshewing the use of loks it is possible to build systems whih sale tohighly-parallel environments and whih are resilient to sheduling deisions.Linked-lists are one of the most basi data strutures used in program design,and so a simple and e�etive non-bloking linked-list implementation ould serveas the basis for many data strutures. This paper presents a novel implementa-tion of linked-lists whih is non-bloking, linearizable and whih is based on thethe ompare-and-swap (CAS) operation found on ontemporary proessors.Setion 5 skethes a proof of orretness, desribes the use of model-hekingto perform exhaustive veri�ation within a limited appliation domain and alsodesribes empirial tests performed on exeution traes from an atual imple-mentation.In Set. 6 we ompare the performane of the new algorithm against thatof a lok-based implementation and against an existing non-bloking algorithm.Compared with these other thread-safe algorithms, ours provides the best perfor-mane on eah of three simulated workloads and for every level of onurreny.2 OverviewIn this setion we present an overview of our algorithm and the diÆulty in im-plementing non-bloking linked-lists. As a running example onsider an orderedlist ontaining the integers 10 and 30 along with sentinel head and tail nodes:
H T3010

Suh a data struture may omprise ells ontaining two �elds: a key �eldused to store the element and a next �eld to ontain a referene to the next ellin the list.Insertion is straightforward: a new list ell is reated (below, left) and thenintrodued using single CAS operation on the next �eld of the proposed prede-essor (below, right).
10H T30

20

10H T30

20In this ase the atomiity of the CAS ensures the the nodes either side ofthe insertion have remained adjaent. This simple guarantee is insuÆient fordeletions within the list. Suppose that we wish to remove the value 10. Anobvious way of exising this node would be to perform a CAS that swings thereferene from the head so that the node ontaining 30 beomes the �rst in thelist:
10H T30Although this CAS ensures that the node 10 was still at the start of thelist it annot ensure that no additional nodes were introdued between the 10node and the 30 node. If this deletion took plae onurrently with the previousinsertion then that new node would be lost:
10

20

H T30The single CAS ould neither detet nor prevent hanges between 10 and30 one the deletion proedure had seleted 30. Our proposed solution { andindeed the rux of the algorithms presented here { is to use two separate CASoperations in plae of that single one. The �rst of these is used to mark the next�eld of the deleted node in some way (below, left), whereas the seond is used toexise the node (below, right):
H T3010 H T3010We say that a node is logially deleted after the �rst stage and that it isphysially deleted after the seond. A marked �eld may still be traversed buttakes a numerially distint value from its previous unmarked state; the strutureof the list is retained while signalling onurrent insertions to avoid introduingnew nodes immediately after those that are logially deleted. In our example theonurrent insertion of 20 would observe 10 to be logially deleted and wouldattempt to physially delete it before re-trying the insertion.

3 Related WorkGeneralized non-bloking implementations based on CAS were presented by Her-lihy [Her91,Her93℄. However, linked-lists based on this general sheme are highlyentralized and su�er poor performane beause they essentially use CAS tohange a shared global pointer from one version of the struture to the next.Valois was the �rst to present an e�etive CAS-based non-bloking implemen-tation of linked-lists [Val95℄. Although highly distributed, his implementation isvery involved. The list is held with auxilliary ells between adjaent pairs of or-dinary ells. Auxilliary exist to provide an extra level of indiretion so that a ellmay be removed by joining together the auxilliary ells adjaent to it. Valois'algorithm exposes a more general and lower level interfae than we do here; heprovides expliit ursors to identify ells in the list and operations to insert ordelete nodes at those points.The originally-published algorithm ontained a number of errors relating tohow referene-ounted storage was managed. One has been reported previouslyand others were identi�ed when implementing Valois' algorithm for omparisonin this paper [MS95,Val01℄.To overome the omplexity of building linearizable lok-free linked-lists us-ing CAS, Greenwald suggested a stronger double-ompare-and-swap (DCAS)primitive that atomially updates two storage loations after on�rming thatthey both ontain required values [Gre99℄. DCAS is not available on today'smulti-proessor arhitetures. However, it does admit a simple linearizable linked-list algorithm: insertions proeed as desribed in Set. 2 and deletions by atomiupdates to the next �eld of the ell being removed as well as that of its predees-sor. Greenwald's work was an extension of earlier non-linearizable DCAS-basedlinked-list algorithms due to Massalin and Pu [MP91℄.4 AlgorithmsIn this setion we present our new algorithm in pseudo-ode modeled on C++and designed for exeution on a onventional shared-memory multi-proessorsystem supporting read, write and atomi ompare-and-swap operations. We as-sume that the operations de�ned here are the only means of aessing linkedlist objets. Eah proessor exeutes a sequene of these operations, de�ning ahistory of invoations/responses and induing a real-time order between them.We say that an operation A preedes B if the response to A ours before theinvoation of B and that operations are onurrent if they have no real-timeordering.A sequential history is one in whih eah invoation is followed immediatelyby its orresponding response. Our basi orretness requirement is linearizabil-ity whih requires that (a) the responses reeived in every onurrent historyare equivalent to those of some legal sequential history of the same requestsand (b) the ordering of operations within the sequential history is onsistentwith the real-time order [HW90℄. Linearizability means that operations appear

class List<KeyType> {

Node<KeyType> *head;

Node<KeyType> *tail;

List() {

head = new Node<KeyType> ();

tail = new Node<KeyType> ();

head.next = tail;

}

}

class Node<KeyType> {

KeyType key;

Node *next;

Node (KeyType key) {

this.key = key;

}

}Fig. 1. An instane of the List lass ontains two �elds whih identify the head andthe tail. Instanes of Node ontain two �elds identifying the key and suessor of thenode.
public boolean List::insert (KeyType key) {

Node *new_node = new Node(key);
Node *right_node, *left_node;

do {
right_node = search (key, &left_node);
if ((right_node != tail) && (right_node.key == key)) /*T1*/

return false;
new_node.next = right_node;
if (CAS (&(left_node.next), right_node, new_node)) /*C2*/

return true;
} while (true); /*B3*/

}Fig. 2. The List::insert method attempts to insert a new node with the suppliedkey.to take e�et atomially at some point between their invoation and response.Our implementation is additionally non-bloking, meaning that some operationwill omplete in a �nite number of steps, even if other operations halt.We write CAS(addr,o,n) for a CAS operation that atomially ompares theontents of addr against the old value o and { if they math { writes n to thatloation. CAS returns a boolean indiating whether this update took plae. Ourdesign was guided by the assumption that a CAS operation is slower to exeutethan a write whih in turn is slower than a read.4.1 Implementing SetsInitially we will onsider a set objet supporting three operations: Insert(k),Delete(k), Find(k). Eah parameter k is drawn from a set of totally-orderedkeys. The result of an Insert, a Delete or a Find is a boolean indiating suessor failure. The set is represented by an instane of List whih ontains a singly-linked list of instanes of Node. As skethed in Set. 2 these are held in asendingorder with sentinel head and tail nodes.

public boolean List::delete (KeyType search_key) {
Node *right_node, *right_node_next, *left_node;

do {
right_node = search (search_key, &left_node);
if ((right_node == tail) || (right_node.key != search_key)) /*T1*/

return false;
right_node_next = right_node.next;
if (!is_marked_reference(right_node_next))

if (CAS (&(right_node.next), /*C3*/
right_node_next, get_marked_reference (right_node_next)))

break;
} while (true); /*B4*/
if (!CAS (&(left_node.next), right_node, right_node_next)) /*C4*/
right_node = search (right_node.key, &left_node);

return true;
}Fig. 3. The List::delete method attempts to remove a node ontaining the suppliedkey.
public boolean List::find (KeyType search_key) {

Node *right_node, *left_node;

right_node = search (search_key, &left_node);
if ((right_node == tail) ||

(right_node.key != search_key))
return false;

else
return true;

}Fig. 4. The List::find method tests whether the list ontains a node withthe supplied key.The referene ontained in the next �eld of a node may be in one of twostates: marked or unmarked. A node is marked if and only if its next �eld ismarked. Marked referenes are distint from normal referenes but still allowthe referred-to node to be determined { for example they may be indiated byan otherwise-unused low-order bit in eah referene. Intuitively a marked nodeis one whih should be ignored beause some proess is deleting it. The funtionis marked referene(r) returns true if and only if r is a marked referene.Similarly get marked referene(r) and get unmarked referene(r) onvertbetween marked and unmarked referenes.The onurrent implementation omprises four methods (Fig. 2-5). The �rstthree, List::insert, List::delete and List::find implement the Insert,Delete and Find operations respetively. The fourth, List::searh, is used dur-ing eah of these operations. It takes a searh key and returns referenes to twonodes alled the left node and right node for that key. The method ensures thatthese nodes satisfy a number of onditions. Firstly, the key of the left node mustbe less than the searh key and the key of the right node must be greater than

private Node *List::search (KeyType search_key, Node **left_node) {
Node *left_node_next, *right_node;

search_again:
do {
Node *t = head;
Node *t_next = head.next;

/* 1: Find left_node and right_node */
do {

if (!is_marked_reference(t_next)) {
(*left_node) = t;
left_node_next = t_next;

}
t = get_unmarked_reference(t_next);
if (t == tail) break;
t_next = t.next;

} while (is_marked_reference(t_next) || (t.key<search_key)); /*B1*/
right_node = t;

/* 2: Check nodes are adjacent */
if (left_node_next == right_node)

if ((right_node != tail) && is_marked_reference(right_node.next))
goto search_again; /*G1*/

else
return right_node; /*R1*/

/* 3: Remove one or more marked nodes */
if (CAS (&(left_node.next), left_node_next, right_node)) /*C1*/

if ((right_node != tail) && is_marked_reference(right_node.next))
goto search_again; /*G2*/

else
return right_node; /*R2*/

} while (true); /*B2*/
}Fig. 5. The List::searh operation �nds the left and right nodes for a partiularsearh key.or equal to the searh key. Seondly, both nodes must be unmarked. Finally, theright node must be the immediate suessor of the left node. This last onditionrequires the searh operation to remove marked nodes from the list so that theleft and right nodes are adjaent. As we will show the List::searh methodis implemented so that these onditions are satis�ed onurrently at some pointbetween the method's invoation and its ompletion.List::searh is divided into three setions. The �rst setion iterates alongthe list to �nd the �rst unmarked node with a key greater than or equal tothe searh key. This is the right node. The left node preliminarily refers to theprevious unmarked node that was found. The seond stage examines these nodes.If left node is the immediate predeessor of right node then List::searhreturns. Otherwise, the third stage uses a CAS operation to remove markednodes between left node and right node.

List::insert uses List::searh to loate the pair of nodes between whihthe new node is to be inserted. The update itself takes plae with a single CASoperation (C2) whih swings the referene in left node.next from right nodeto the new node.List:delete uses List::searh to loate the node to delete and then usesa two-stage proess to perform the deletion. Firstly, the node is logially deletedby marking the referene ontained in right node.next (C3). Seondly, the nodeis physially deleted. This may be performed diretly (C4) or within a separateinvoation of searh.The List::find method is shown in Fig. 4. It invokes List::searh andexamines the resulting right node.5 CorretnessIn this setion we desribe three approahes taken to heking the orretnessof the algorithms presented here. Setion 5.1 outlines a proof of linearizabilityand progress, Set. 5.2 desribes the exhaustive testing of some ases throughmodel heking and Set. 5.3 desribes a method we used for examining traesfrom partiular program runs.5.1 Proof SkethWe will take a fairly diret approah to outlining the linearizability of the op-erations by identifying partiular instants during their exeution at whih theomplete operation appears to our atomially.Conditions Maintained by Searh. Our argument relies on the onditionsidenti�ed in Set. 4.1 whih the implementation of List::searh guaranteeshold at some point during its invoation. For the ordering onstraints, notethat when right node is initialized the preeding loop ensured that searh key� right node.key. Similarly left node.key < searh key beause otherwisethe loop would have terminated earlier.For the adjaeny ondition and the mark state of the left node we mustseparately onsider eah return path. If List::searh returns at R1 then thetest guarding the return statement ensures that right node was the immediatesuessor of the left node when the next �eld of that node was read into theloal variable t next. The same value of t next is found to be unmarked beforeinitializing left node. If List::searh returns at R2 then C1 establishes therequired onditions.For the mark state of the right node, observe that both return paths on�rmthat the right node is unmarked after the point at whih the �rst three onditionsmust be true. Nodes never beome unmarked and so we may dedue that theright node was unmarked at that earlier point.

Linearization points. Let opi;m be the mth operation performed by proessori and let di;m be the �nal real-time at whih the List::searh post-onditionsare satis�ed during its exeution. These di;m identify the times at whih theoutome of the operations beome inevitable and we shall take the orderingbetween them to de�ne the linearized order of Find(k) operations or unsuessfulupdates. For a suessful �nd at di;m the right node was unmarked and ontainedthe searh key. For an unsuessful insertion it exhibits a node with a mathingkey. For an unsuessful deletion or �nd it exhibits the left and right nodes whih,respetively, have keys stritly less-than and stritly greater-than the searh key.Furthermore let ui;m be the real-time at whih the update C2 inserts a node orC3 logially deletes a node. We shall take ui;m as the linearization points for suhsuessful updates. In the ase of a suessful insertion the CAS at ui;m ensuresthat the left node is still unmarked and that the right node is still its suessor.For a suessful deletion the CAS at ui;m serves two purposes. Firstly, it ensuresthat the right node is still unmarked immediately before the update (that is, ithas not been logially deleted by a preeding suessful deletion). Seondly, theupdate itself marks the right node and therefore makes the deletion visible toother proessors.Progress. We will show that the onurrent implementation is non-bloking.We will show that eah suessful insertion auses exatly one update, that eahsuessful deletion auses at most two updates and that unsuessful operationsdo not ause any updates.The CAS instrutions C1 and C4 eah sueed only by unlinking marked nodesfrom the list. Therefore the number of times that these CAS instrutions sueedis bounded above by the number of nodes that have been marked. Exatly onenode is marked during eah suessful deletion (C3) and therefore at most oneupdate may be performed by C1 or C4 for eah suessful deletion. The remainingCAS instrutions (C2 and C3) our respetively exatly one on the return pathsfrom suessful insertions and deletions.Sine there are no reursive or mutually-reursive method de�nitions onsidereah bakward branh in turn:{ Eah time B1 is taken the loal variable t is advaned one node down thelist. The list is always ontains the unmarked tail node and the nodes visitedhave suessively stritly larger keys.{ Eah time B2 is taken the CAS at C1 has failed and therefore the value ofleft node.next 6= left node next. The value of the �eld must have beenmodi�ed sine it was read during the loop ending at B1. Modi�ations areonly made by suessful CAS instrutions and eah operation auses at mosttwo suessful CAS instrutions.{ Eah time B3 or B4 is taken the CAS at C2 or C4 has failed. As before, thevalue held in that loation must have been modi�ed sine it was read inList::searh and at most two suh updates may our for eah operation.

{ Eah time G1 or G2 is taken then a node whih was previously unmarkedhas been marked by another proessor. As before, at most two updates mayour for eah operation.5.2 Model ChekingThe dSPIN model heker was used to exhaustively verify the operations forertain problem domains. dSPIN is an extension of the SPIN model hekerwith adds support for pointers, storage management, funtion alls and loalsopes [Hol97,IS99℄. This made it more suitable than SPIN for a natural repre-sentation of these algorithms.The modeled state ontains two representations of the set: one omprises alinked list of ells whereas the other is summarized as a bit vetor. The linkedlist is updated as proposed here using atomi d step instrutions to implementCAS. The bit vetor is heked or updated using further d steps at the proposedlinearization points.The model was parameterized aording to the number of onurrent threads,the number of operations that eah would attempt and the range of key valuesthat ould be used. The two largest on�gurations we ould pratiably test werewith four threads, eah performing one operation with three potential keys andwith two threads eah performing two operations with four potential keys.5.3 Pratial TestingThe linearizability of the operations has also been tested pragmatially. Althoughsuh tests annot provide the assuranes of formal methods they are nonethe-less important beause they avoid the need to make simplifying assumptionsfor tratability. In partiular, the use of relaxed memory models means thatthe operations supported by a onventional shared memory mahine are notlinearizable; a diret implementation is likely to fail without further memorybarrier instrutions.It is not generally possible to reord atual timestamp values for arbitraryoperations within an running proess. Instead, we surrounded the ode exe-uted at eah linearization point with further instrutions to reord oherentper-proessor yle ounts.The resulting intervals were reorded to an in-memory log whih was thenreplayed sequentially in timestamp order. The results thus obtained were om-pared with those from the onurrent exeution. The replay program ontainssimple heuristis to deal with overlapping intervals. If these annot determine aonsistent linearized order then the replay program reports unresolved inonsis-tenies for manual inspetion and re-ordering.6 ResultsThe algorithm desribed in Set. 4 has been implemented in a ombination of Cand SPARC V9 assembly language. We evaluated its performane on an E450

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

C
P

U
 ti

m
e

/ s
ec

on
ds

Number of threads

Mutex
Valois

New

Valois (ref-count)

New (ref-count)

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

C
P

U
 ti

m
e

/ s
ec

on
ds

Number of threads

Mutex

Valois

New(a) All �ve algorithms operating withkeys in the range 0 : : : 255. (b) Non-referene-ounted algorithmswith keys 0 : : : 255.
0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

C
P

U
 ti

m
e

/ s
ec

on
ds

Number of threads

Mutex

Valois

New

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16
C

P
U

 ti
m

e
/ s

ec
on

ds
Number of threads

Mutex

Valois

New() Non-referene-ounted algorithmsall operating on key 0. (d) Non-referene-ounted algorithmson keys 0 : : : 8191.Fig. 6. CPU time (user+system) aounted to the benhmark applition for eah algo-rithm on a variety of workloads. In eah ase the x-axis shows the number of onurrentthreads.server running Solaris 8 and �tted with four 400MHz SPARC V9 proessorsand 4GB physial memory. It is worth emphasising that the ode in Fig. 1-4is intended merely as pseudo-ode and does not reet an optimised (or evenneessarily orret) implementation. Proessors may require additional memorybarriers { for example between initializing the �elds of a new node and intro-duing it into the list, or between the CAS that logially deletes a node and theCAS that physially deletes it.The test appliation ompared our implementation against Valois' lok-freealgorithm and against a straightforward one in whih the list is proteted bya mutual exlusion lok1. Both lok-free algorithms were evaluated with andwithout referene-ounting. All list ells were alloated ahead of time so that theperformane of partiular memory alloation funtions was not inluded in the1 This omparison against a lok-based algorithm is somewhat unfair: the simpli�edprogramming model there makes it straightforward to implement a more eÆientdata struture suh as a tree or skiplist.

results. The ode to manipulate referene-ounts is based on Valois' as modi�edby Mihael and Sott with the exeption that referene ounts are reursivelyderemented when a ell is freed.We generated a workload of insertion and deletion operations by randomlyhoosing keys uniformly distributed within a partiular range, seleting equiprob-ably between insertions and deletions. We used per-thread linear ongruentialrandom number generators with the same parameters as the lrand48 funtionfrom the Solaris 8 lib library. Seeds were hosen to give non-overlapping series.The test harness was parameterized on the algorithm to use, the numberof onurrent threads to operate and the range of keys that might be insertedor deleted. In eah ase every thread performed 1 000 000 operations. Figure 6shows the CPU aounted to the proess as a whole for eah of the algorithmstested on a variety of workloads.It is immediately apparent that our algorithm performs notably better forevery experiment using more than one thread. In the ase of single-threadedexeution it outperforms Valois' algorithm in these tests and its performaneequals that the lok-based implementation. The relative performane omparedwith Valois' algorithm is not surprising: we avoid the need to reate, traverseand exise auxilliary nodes.In addition to the workloads presented in those graphs we also tested on-�gurations with larger ranges of keys, or where the list was initially `primed'with a long sequene of nodes that would never be deleted. In eah ase thisinreased the total number of nodes in the list and thereby added to the ost ofretrying operations when CAS instrutions fail. One fear was that the lok-freealgorithms would start to perform poorly beause of the potential for multipleretries. We studied workloads up to lists of 65536 elements and were unable to�nd any on�guration for whih the algorithms based on mutual-exlusion givethe best performane. We suspet that although eah retry beomes more ostly,the likelihood of retries dereases as the rate of oniting updates falls.Figure 6a shows the performane of referene-ounted implementations. TheCPU requirements of Valois' algorithm are degraded by a fator of 5 in thesingle-threaded ase, rising to over 11 for sixteen threads. Similarly, the CPUtime required by our algorithms is degraded by a fator of 10 rising to over 15.In eah ase this is a onsequene of need to manipulate referene-ounts (usingCAS operations) at eah stage during a list's traversal. Valois reports that hehad originally intended to assume the use of a traing garbage olletor [Val01℄.The performane of referene-ount manipulation is hampered beause theSPARC proessor does not provide atomi feth-and-add. However, measure-ments taken on a dual-proessor Intel x86 mahine (with that faility [PPr96℄)suggest that the degradation is low when ompared with the overall osts seenhere. When the referene ounts lie on separate lines in the L1 data ahe thenupdates implemented through CAS are 10% slower than those using feth-and-add. This rises to a fator of 2 degredation when the two proessors attempt toupdate the same address.

Of ourse, our results are optimisti in that they do not onsider the ost ofperforming GC. However, as Jones and Lins write, if the size of the ative datastruture is �xed then the ost of opying olletors may be redued arbitrarilyat the expense of the total heap size [JL96℄. More pratially, they report thatoverall osts of around 10-20% are typial in modern well-implemented systems.We examined a further approah to storage relamation based on the deferredfreeing of nodes. In this sheme eah node ontains an additional �eld throughwhih it an be linked onto a to-be-freed list when it is exised from the mainlist. Eah thread takes a snapshot of a global timer as its urrent time beforestarting eah operation. Entries are removed from a to-be-freed list when thetime of their exision preedes the minimum urrent time of any thread: at thatpoint no thread an still have a referene to the node held in any of its loalvariables.Our implementation alloates a pair of to-be-freed lists for eah thread. Theseare termed the old list and the new list and are held along with a separate per-thread timer snapshot that is more reent than the exision time of any elementof the old list. When the minimum urrent time exeeds the snapshot then theentire ontents of the old list are freed and the elements of the new list are movedto the old list.This deferred freeing sheme introdues two prinipal overheads when om-pared with the used of garbage olletion. Firstly, a CAS operation is neededto plae nodes on a to-be-freed list { in our implementation this inreased theCPU requirements by 15% ompared with the results from Fig. 6a operatingwith 16 threads. The seond overhead is the ost of removing elements from theto-be-freed lists and establishing when it is safe to do so. This was a further1% when performed every 1000 operations and 5% every 100, rising to 52% ifperformed after every operation.Figure 7 presents a further analysis of the run-time performane of the threenon-referene-ounted algorithms, showing the distribution of exeution-timesfor four di�erent kinds of operation. These results were gathered when 8 onur-rent threads performing insertions and deletions of keys in the range 0 : : : 255.In the ase of suessful operations the lok-based implementation is able toahieve lower exeution times than either lok-free sheme. However, it is alsooasionally prone to muh longer exeution times whih explain the higher meanexeution time suggested by Fig. 6.The situation is somewhat di�erent for unsuessful operations in that bothlok-free algorithms obtain some exeution times whih are lower than those ofthe lok-based implementation { reall that unsuessful operations may ourwithout requiring any CAS operations or other updates to the data struture.7 Delete Greater-than-or-equalNow onsider the problem of implementing a further operation of the formDeleteGE(k) whih returns and removes the smallest item that is greater thanor equal to k. It is tempting to implement this by modifying List::delete so

0

500

1000

1500

2000

2500

3000

3500

100 1000 10000

N
um

be
r

of
 o

cc
ur

an
ce

s

Duration (cycles)

Mutex

Mutex

Valois

New

New

0

500

1000

1500

2000

2500

3000

3500

100 1000 10000

N
um

be
r

of
 o

cc
ur

an
ce

s

Duration (cycles)

Mutex

New

Valois

Mutex

New(a) Suessful insertions (b) Unsuessful insertions
0

500

1000

1500

2000

2500

3000

3500

100 1000 10000

N
um

be
r

of
 o

cc
ur

an
ce

s

Duration (cycles)

Mutex

New

Valois

Mutex

New

0

500

1000

1500

2000

2500

3000

3500

100 1000 10000

N
um

be
r

of
 o

cc
ur

an
ce

s
Duration (cycles)

Mutex

New

Valois

Mutex

New() Suessful deletions (d) Unsuessful deletionsFig. 7. Operation-time distributions. Eah graph shows exeution times (in proessoryles) on the x-axis and numbers of ouranes on the y-axis.that the test T1 does not fail if the key of the right node is greater than thesearh key.Unfortunately this implementation is not linearizable. Suppose that threeinsertion operations are exeuted in sequene: Insert(20), Insert(15), Insert(20).The �rst two sueed and the third must fail beause 20 is already in the set.However, onsider a onurrent DeleteGE(10) operation, attempting to deleteany node with a key greater than or equal to 10. Conurrent exeution mayproeed as follows:{ List::deleteGE invokes List::searh immediately after the �rst insertionof 20. It takes the head of the list as the left node and the node ontaining20 as the right.{ The suessful insertion of 15 ours.{ The unsuessful insertion of 20 ours, observing 15 as the key of its leftnode and 20 as the key of its right node.{ List::deleteGE(10) ompletes after logially deleting the node ontaining20.

We must order this DeleteGE(10) operation suh that its result of 20 wouldbe obtained by a sequential exeution. This requires it to be plaed before theinsertion of 15 beause otherwise the key 15 should have been returned in prefer-ene to 20. However, we must also linearize the deletion after the failed insertionof 20 beause otherwise that insertion would have sueeded. These onstraintsare irreonilable.Intuitively the problem is that at the exeution of C3 the right node neednot be the immediate suessor of the left node. This was aeptable whenonsidering the basi Delete(k) operation beause we were only onerned withonurrent updates a�eting nodes with the same key. Suh an update musthave marked the right node and so C3 would have failed. In ontrast, during theexeution of List::deleteGE, we must be onerned with updates to any nodeswhose keys are greater than or equal to the searh key.We an address this by retaining the implementation of List::deleteGE buthanging List::insert in suh a way that C3 must fail whenever a new nodemay have been inserted between the left and right nodes. This would mean that,whenever C3 sueeds, the key of the right node must still be the smallest keythat is greater than or equal to the searh key.This is ahieved by using a single CAS operation to (a) introdue a pair of newnodes, one that ontains the value being inserted and another that dupliatesthe right node and (b) mark the original right node:
30

20 30

10H TSuh a CAS oneptually has two e�ets. Firstly, it introdues the new nodeinto the list: beforehand the next �eld of the suessor is unmarked and there-fore the right node must still be the suessor of the left node. Seondly, bymarking the ontents of that next �eld, the CAS will ause any onurrentList::deleteGE with the same right node to fail. Note that the key of thenow-marked right node is not in the orret order. However, the existing imple-mentations of List::searh, List::delete, List::find and List::deleteGEare written so that they do not rely on the orret ordering of marked nodes.8 ConlusionThis paper has presented a new non-bloking implementation of linked lists. Webelieve that the algorithms presented here are linearizable. They have also beenimplemented and we have shown that their measured performane improves bothon previously published non-bloking data strutures and also on a lok-basedimplementation.8.1 AknowledgmentsThe work desribed in this paper was arried out during an internship withthe Java Tehnology Researh Group at Sun Labs. The design presented here is

the result of muh fruitful disussion with Dave Detlefs, Christine Flood, AlexGarthwaite, Steve Heller, Nir Shavit and Guy Steele. The implementation andevaluation have similarly bene�tted from feedbak from Mike Burrows, KeirFraser, Steven Hand, Mark Moir and John Valois.Referenes[ABP98℄ Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread shedulingfor multiprogrammedmultiproessors. In Proeedings of the 10th Annual ACMSymposium on Parallel Algorithms and Arhitetures, pages 119{129, PuertoVallarta, Mexio, June 28{July 2, 1998. SIGACT/SIGARCH.[GC96℄ Mihael Greenwald and David Cheriton. The synergy between non-blokingsynhronization and operating system struture. In USENIX, editor, 2ndSymposium on Operating Systems Design and Implementation (OSDI '96),Otober 28{31, 1996. Seattle, WA, pages 123{136, Berkeley, CA, USA, Oto-ber 1996. USENIX.[Gre99℄ M Greenwald. Non-bloking synhronization and system design. PhD thesis,Stanford University, August 1999. Tehnial report STAN-CS-TR-99-1624.[Her91℄ Maurie Herlihy. Wait-free synhronization. ACM Transations on Program-ming Languages and Systems, 13(1):124{149, January 1991.[Her93℄ Maurie Herlihy. A methodology for implementing highly onurrent data ob-jets. ACM Transations on Programming Languages and Systems, 15(5):745{770, November 1993.[Hol97℄ Gerard J Holzmann. The moel heker SPIN. IEEE Transations on SoftwareEngineering, 23(5):279{295, May 1997.[HW90℄ Maurie P. Herlihy and Jeannette M. Wing. Linearizability: A orretness on-dition for onurrent objets. ACM Transations on Programming Languagesand Systems, 12(3):463{492, July 1990.[IS99℄ Radu Iosif and Riardo Sisto. dSPIN: A dynami extension of SPIN. InPro. of the 6th International SPIN Workshop, volume 1680 of LNCS, pages261{276. Springer-Verlag, September 1999.[JL96℄ Rihard Jones and Rafael Lins. Garbage Colletion: Algorithms for AutomatiDynami Memory Management. John Wiley and Sons, July 1996.[LaM94℄ Anthony LaMara. A performane evaluation of lok-free synhronizationprotools. In Proeedings of the Thirteenth Symposium on Priniples of Dis-tributed Computing, pages 130{140, 1994.[MP91℄ Henry Massalin and Calton Pu. A lok-free multiproessor OS kernel. Teh-nial Report CUCS-005-91, Columbia University, 1991.[MS95℄ Maged M. Mihael and Mihael L. Sott. Corretion of a memory managementmethod for lok-free data strutures. Tehnial Report TR599, University ofRohester, Computer Siene Department, Deember 1995.[PPr96℄ Pentium Pro Family Developer's Manual, volume 2, programmer's referenemanual. Intel Corporation, 1996. Referene number 242691-001.[Val95℄ John D. Valois. Lok-free linked lists using ompare-and-swap. In Proeed-ings of the Fourteenth Annual ACM Symposium on Priniples of DistributedComputing, pages 214{222, Ottawa, Ontario, Canada, 2{23 August 1995.[Val01℄ John D Valois. Personal ommuniation. Marh 2001.

